Use of Assisted Migration and Community Zonation Patterns to Build a Climate-Resilient Coastal Landscape

Loretta L. Battaglia Hannah J. Kalk

Southern Illinois University Carbondale, Illinois USA

Coastal plant communities and altered inundation regimes

Adapt, go extinct, or migrate inland

With only 1 m rise in sea-level, 26-66% of coastal wetlands will be lost (Mitsch and Gosselink, 2007)

Climate Change and Restoration

- "Moving targets"
 - Rate of change
 - Direction of change
- Anticipatory or futuristic restoration
- Fast Slow

Time

Assisted migration

Relative Ease of Futuristic Restoration

		Rate of Change		
		Slow	Fast	
Pattern of Spatial Change	Linear	High	Moderate	
	Exponential	Moderate	Low	
	Erratic or No-analogue	?	??	

Coastal Wetlands

- Spatial zonation of communities along strong environmental gradients
- Stress-tolerant species at seaward end, stronger competitors farther inland (Bertness and Ellison 1987, Pennings et al. 1995)
- Rate of change varies depending on relative SLR, *etc*.
- N. Atlantic, Gulf of Mexico, especially at risk (Hammer-Klose and Thieler 2001, Meehl et al. 2005, Ramstorf 2007)

Relative Ease of Futuristic Restoration

		Rate of Change		
		Slow	Fast	
Direction of Spatial Change	Linear	High	Moderate	
	Non-linear	Moderate	Low	
	Erratic or No-analogue	?	??	

Study Questions

- With removal of biotic filters, can dominant species from seaward communities establish and survive when introduced into landward locations? (Reciprocal planting study – Weeks Bay, AL)
- Can assisted colonization enable successful futuristic restoration and if so, how futuristic? (FEMA Restoration Sites – Grand Bay, AL)

Northern Gulf of Mexico

• Relatively slow relative SLR

Dominants of Seaward Vegetation Zones

- Salt marsh: Spartina alterniflora
- Brackish marsh: *Juncus roemerianus*
- Fresh marsh: *Cladium jamaicense*

Methods

- Late Summer 2008 vegetation removed in 1m² plots
- Five culms of 3 dominant species from 3 most seaward vegetation zones planted in monoculture
- Transplant zones (3 sp x 5 reps; total plots = 75)
 - Salt marsh (SM)
 - Brackish marsh (BM)
 - Fresh marsh (FM)
 - Fresh marsh Forest ecotone (EC)
 - Wetland seep forest (FO)
- Survival (and growth) monitored seasonally for 2 years

Removal of Standing Vegetation

Planting of Culms

Results

Summary of Results

- All species established and survived in at least one of the zones landward of their original zone
- Juncus exhibited the broadest "new" distribution
 - Established seaward of original position
 - Thriving in forest (canopy openings from Hurricane Katrina in 2005)
- Cladium was able to establish landward as well, but not in more seaward zones

FEMA Buyout Homestead Sites

- 15 former pine forests adjacent to GBNERR
- Purchases began following inundation by Hurricanes Georges in 1998
- Highly disturbed
- Heavily infested with noxious exotics: Imperata cylindrica, Panicum repens and Triadica sebifera
- Vacant and awaiting management

Design of Propagule Bank Experiment

Randomly Selected: 5 sites, 9m X 13m plots, 24-1m X 1m subplots

Site Preparation: herbicide, mowing, tilling, raking

Donor Bank Collection and Application

0.50m x 0.25 m sods

Data Collection and Site Maintenance

•Presence/Absence data

•Species remove Eupatorium capillifolium, Centrosema virginiana, Ipomoea quamoclit and Cuphea glutinosa

Richness and Diversity

- Site preparation greatly increased species richness and diversity
- Highest in plots with freshwater sods, relative to plots with control and saline marsh sods

Compositional Trends

- ★ Site 5: Pine Savanna
- ★ Site 5: Salt Marsh

Axis 1

Stress value= 0.17, based on absence/presence data

Effects of Site on Composition

• PERMANOVA: Pseudo-F = 31.05, p < 0.0010

	% Sand	% Silt	% Clay	Mean % Soil Moisture	Salinity (ppt)	Conductivity(µs/cm)
Site 1	69.8	19.6	10.6	28.3	0.3	568.0
Site 2	63.8	23.6	12.6	40.0	0.1	199.2
Site 3	62.4	29.6	8.0	29.2	0.2	388.5
Site 4	66.4	25.0	8.6	33.5	0.1	221.1
Site 5	56.5	30.9	12.6	24.3	0.2	442.9

Effects of Propagule Sod on Composition

• PERMANOVA: Pseudo-F = 3.06, p < 0.0010

	Control	Salt marsh	Brackish marsh	Fresh marsh	Maritime pine island
Salt marsh	0.001				
Brackish marsh	0.104	0.081			
Fresh marsh	0.001	0.001	0.001		
Maritime pine island	0.001	0.001	0.001	0.105	
Pine savanna	0.008	0.008	0.007	0.001	0.001

Recruitment of Target Species

• Targets emerge both from seed and resprout, most are indicator species from seed bank assessment

Vegetation Zone	Total # of Target	Most Abundant Species	% of Subplots (Across
	Species		all 5 sites)
Salt Marsh	2	Spartina alterniflora	15
		Distichlis spicata	5
Brackish Marsh	1	Juncus roemerianus	40
Freshwater Marsh	5	Sabatia stellaris	45
		Panicum virgatum	15
Maritime Pine Island	6	Spartina patens	85
		Pinus elliottii	20
		Scirpus lineatus	15
Wet Pine Flatwood	17	Aristida beyrichiana	45
		Andropogon glomeratus	35
		Lachnanthes caroliniana	30
		Aletris lutea	20
		Lycopodiella prostrata	15
		Sarracenia alata	5

Distribution of Desirable Taxa

- Mean number of taxa in each functional category varies significantly across sod treatment types and sites
- More target species in freshwater and wet pine flatwood plots than in control and salt marsh plots

Summary of Results

- Species diversity and richness increased, and noxious species greatly reduced on all treated areas
- Propagule sods resulted in "hybrid" communities (Hobbs et al. 2009), containing generalist and alien species, as well as indicator species from historic communities
- A viable propagule source for restorations, containing taxa with diverse life histories and environmental tolerances (Pywell et al. 1995, Brown and Bedford 1997, Anderson and Cowell 2004)
- Freshwater marsh and maritime pine island sods best suited to the restoration sites seaward species can tolerate inland conditions
- Local environmental conditions and proximity to ruderal source populations also drive community composition/dynamics

Is anticipatory restoration feasible?

- Yes, but...
 - Differing degrees depending on species and background environmental change
 - Short-term success of propagule bank application in instilling diverse species into degraded ecosystems, long-term storage important
- Rate and direction of underlying abiotic change are key drivers
 - Communities that are sequentially arranged along strong environmental gradients may be easiest
 - Lack of spatial contiguity may require assisted colonization
 - Exotic species
- Use of common futuristic garden experiments at natural ecotones in the landscape to ease transition for vulnerable communities and enhance landscape fluidity (Manning et al. 2009) as climate change and sea-level rise alter site conditions

Acknowledgements

- Brooks Davey
- Jeni Miller
- Scott Phipps
- Scott Schuette
- Joey Weber

Questions?

Vegetation-Seedbank Comparison

• Procrustes RMS Residual (mean distance between parent vegetation and SB, goodness of fit)

